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1. Introduction

1.1 Computation of Propagating Pulses

The main requirement of the Local Parabolic Method (LPM) development is a
method to compute thin propagating wave equation pulses that do not spread due to
numerical effects.

(This part of the research will, by itseltf be important for computing long distance
propagation of pulses in the time domain.)

A general method is described to efficiently simulate these wave equation pulses,
in Eulerian computations on fixed, coarse grids. The method, "Lattice Confinement",
involves treating the features as solitary waves that obey nonlinear, difference equations,
which are different from Taylor expansion- based discrete approximations to the
governing, partial differential equations (pde's). These equations are rotationally
invariant generalizations to multiple dimensions of 1 -D discontinuity confinement
schemes. The method is a generalization of an earlier method, "Vorticity Confinement"
[1], which was successful in efficiently treating thin, vortical regions.

For long distance propagation of pulses, direct discretization and solution of the
governing partial differential equations (pde's) using conventional Eulerian Taylor
expansion -based numerical methods to resolve the thin features can be prohibitively
expensive. Even adaptive unstructured grid methods are very expensive and complex for
general problems with many small-scale, time-dependent features. Fortunately, the details
of the internal structure of these small features are often not as important as integral
quantities. The quantities of importance for our purpose are the centroid motion and total
integrated amplitude at each point along the pulse surface. The main issue in computing
these cases is that conventional pde-based methods require a relatively large number of
grid cells (4-8) across each small dimension to treat a feature, such as a wave equation
pulse. Even then, the details of the internal structure will be mainly determined by the
discrete numerics, and not the physics of the pde. Also, numerical discretization errors
will still build up over long distances, causing, for example, large, unphysical spreading.

This leads us to the idea of simulating or '"modeling " the thin features directly on
the grid with difference equations, rather than attempting to accurately discretize the
pde's for them using finite difference approximations. The idea of modeling, or solving
for small-scale features directly on the grid without using smoothness assumptions or
Taylor expansions, i.e., as "weak solutions", goes back t work of Lax and others [2], but
was applied mostly to shocks. Shocks, however, effectively, "capture themselves"
because they have converging characteristics. Harten [3] did treat contact discontinuities
in this way, which do not have converging characteristics, but for 1-D compressible flow.

First, the Lattice Confinement method will be reviewed for wave equation pulses.
Some results will then be presented for short scalar pulses obeying the wave equation
(with Lattice Confinement). Previous results [4] for a 2-D pulse reflecting from planar
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surfaces will be shown, then 3-D results for a pulse reflecting from complex objects (a
missile and an aircraft). This missile case will involve multiple, curvilinear grids.

1.2 Main Features of Lattice Confinement
(Parts of this section are related to Ref. [4])

The main idea is to treat thin features as nonlinear solitary waves that "live'
directly on the grid lattice, spread over only a few cells. The internal structure is
determined by the discrete lattice equations. The total amplitude, centroid and (in a future
extension), a few moments, however, are determined by the physics. These quantities are
transported across the grid with essentially no numerical errors (for constant slowness).
For smoothly varying slowness, small discretization effects will occur, based on the
longer length scale of the slowness variation, but not based on the shorter length scale of
the pulse..

Essentially, these discrete equations define a simple, implicit model which obeys
a "fast" dynamics, relaxing to an asymptotic, propagating state in a few time steps. In this
way we can simulate the most important physical effects of the small scales, which
cannot be accurately computed by just discretizing the governing pde's on the given grid.
These effects can be, for example, that thin wave equation pulses propagate over long
distances without spreading in a smooth, slowly varying external field, and that they can
merge or reflect, respectively, and thus change topology.

1.2.1 Stationary Case

The formulation presented here is related to that presented in [5] in 1-D. First a
stationary pulse is discussed, requiring only an iteration of the Lattice Confinement
terms, so that the simple asymptotic form can be seen. Advection, in general, will change
this form somewhat. However, in the limit of small advection time step, or if a number of
these "Confinement" steps are taken for each convection step, then the following form
should result. The same is true for the wave equations. Results very close to these are also
found with advection steps that are not small; these are shown in Ref. [5].

We start with an iteration sequence for a single-signed scalar, 0:

At
or

o,+, =o•n + h 2v2(p,_• (Pon.1)n

where (D is a nonlinear function of 0 (given below) and y is a diffusion coefficient that
can include numerical effects in a convection or wave equation solution (we assume
physical diffusion is much smaller). The discretized grid cell size is h and time step, At.
For the last term, e is a numerical coefficient that, together withp, controls the size and
time scales of the confined features. For this reason, we refer to the two terms in the
brackets as 'Confinement terms".
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The two (positive) parameters, E and y , are determined by the two small scales
of the computation, h and At, since we want the small features to relax to their solitary
wave shape in a small number of time steps and to have a support of a small number of
grid cells. Thus, even though h may be small, the Laplacian will be large and the total
effect also large.

For the propagating pulse problem, it is assumed that the slowness field is
propagating is slowly varying compared to these scales (this is required if the grid cell
size and time step are to resolve the pde's governing this outer flow). Relaxation of this
assumption will be studied in the proposed effort. We then have a two-scale problem with
the thin structure obeying a "fast" dynamics:

YO~ -E 8(I 0.

With propagation in a "slow"' smooth external field, this relation is still approximately
satisfied, as verified by computations and heuristic arguments [4].

There are many possibilities for D. A simple class is

I C

ýn =1 0 In

The above sum is over a set of grid nodes near and including the node where (D is
computed. The absolute value is taken and 3, a small positive constant (- 10-8), is added
to prevent problems due to finite precision. The coefficients, C,, can depend on 1, but
good results for many cases are obtained by simply setting them as well as p to 1. Then,
(D is the harmonic mean of ( on the local stencil. Other forms could also be used, with
p >1. p = co corresponds to the minimum of the absolute value: for 2-D and 3-D
applications discontinuous operators such as "'Tin" will not result in as smooth
distributions as continuous ones, and we use only p = 1 or p = 2.

An important feature of Lattice Confinement is that all terms are homogeneous of
degree 1 in Eqn. 1.1 (as they are in the wave equation). This is necessary because the
Lattice Confinement terms should not depend on the scale of the quantity being confined.
Another important point is that wavelengths longer than the thin features that are to be
confined must have a negative diffusive behavior, so that the features remain confined,
that is stable to perturbations against spreading. This means that D must be nonlinear: It
is easy to show by Von Neumann analysis that a linear combination of terms, for example
of second and fourth order, cannot lead to a stable Confinement for any finite range of

4



coefficients: any wavelength that exhibits negative diffusion would then eventually

diverge.

1.2.2 Wave Equation Formulation

We start with the 1-D scalar wave equation with constant wave speed, c, for
simplicity. As in scalar convection, we add an additional term to control the shape of a
short pulse:

or, using a simple time discretization,

on+' - 20n + "n-I = c 2Ata20 + Ata2 (1.3)

It was seen in Ref [6] that the addition of "Lattice Confinement" terms in the form of
second derivatives of a function that has finite support do not change the propagating
speed (nor the total amplitude) of a propagating, confined pulse. The same is true for the
wave equation, if an additional time derivative is applied. This means, of course, that they
do not change the motion of the centroid of an isolated pulse.

The main constraint on the Confinement term, Vf , is that it force an initial
isolated, propagating compact pulse with a single maximum to remain compact and not
develop any additional maxima. We use:

,, = ,S,,On -e8, V" (on) (1.4)

In this term D has the form given by Eqn. (1.2) in terms of its argument. We have
defined

3nfn =fn - f.-1

Results will be given in Section 4 using this form.

An important feature of the method is that the waves do not suffer a "phase shift"
when they pass through each other. This is obvious for the equation we want to simulate
- the linear wave equation. However, the Confinement term is nonlinear. Such a phase
shift would show up as a kink in two waves in 2 or 3 dimensions that are passing through
each other, and can be studied in detail in 1-D. It turns out that there is no kink, to
plottable accuracy, as can be seen in the plotted scattering results in Sec. 4.1. Results for
the centroid trajectories for 2 pulse passing through each other in 1-D are presented in
Fig. 1. There, the computed centroids are plotted as solid lines and the exact as dashed
(the periodic boundary conditions can be seen in the former). It can be seen that there is
no phase shift to plottable accuracy. This lack of nonlinear interaction persists, according
to our study, in the limit of small time step (2 orders of magnitude smaller that that of
Fig. 1), even though 0(102) confinement corrections were applied as the pulses were
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overlapping. We attribute this to the existence of another conserved variable, similar to
total energy. This computation was done by Nick Lynn of University of Tennessee Space
Institute (UTSD).

One other important use of Lattice Confinement for the wave equation involves
cases with multiple grids with grid interfaces. If only the discretized wave equation is
used, with no Confinement, reflections result from small numerical errors at the grid
interfaces, unless special care is taken. Lattice Confinement completely overcomes this
problem and the (single) pulse propagates across the interface with no reflections.

Some of the advantages of using direct difference equations instead of pde's for a
related problem can be found in Ref [7]. There, a very efficient formulation is derived
for the Helmholtz equation by minimizing the L2 norm of the error of waves propagating

with flxedlkl.

1.3 Vector Potential Formulation

In a recent promising development in our wave equation research, we have
implemented a vector potential, 24, as the basic variable, instead of a scalar representing
the P and B fields. If sufficient time is available, this formulation will be investigated in
detail.

Even though there is no direct effect of this alternative formulation in classical
electromagnetics, there is a major advantage in the computation of pulse solutions. This
is because, for a thin pulse, R and 3 only have a small region of support, but 2 extends
throughout the field. The / and B representation of the pulse is a spread delta function
across the width, but the 4 representation is a step function. As a result, it is much easier
to capture the pulse by operating on A, since it is topologically "trapped" by this field.
The argument is exactly the same as in Vorticity Confinement, where thin vortical
regions (Co) are trapped in a velocity field, q, extending throughout space. (This is also
related to the trapping of defects in other field theories). The resulting confinement terms
are exactly the same in the two cases, with A corresponding to q and F corresponding
to Co.

The formulation is
A= 'x2i

82;j = c 2VA2+ +4,VD2 2+ E5,VD xb

where b is a local harmonic mean of 3 at each grid point:

B~f FI N'

where 6, and VD denote discrete operators and Eqn. 1.2 was used with a sum over N
neighboring points, labeled £. In the formulation the Coulomb gauge was used so that a
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scalar potential does not appear in the equation for A. Also, V. A = 0 is then enforced.
This is also directly analogous to the incompressibility condition, V. = 0.

2. Objectives
Develop "pulse Capturing" method to generate approximate short wavelength

solution which is useful by itself for computing long distance amplitudes and which will
provide a coordinate system for the locally parabolic propagation method.

3. Status of effort
Have developed a pulse propagation method for tracing the path of a short

wavelength signal through a medium with varying index of refraction and over complex,
reflecting terrain. The method is completely Eulerian and does not use any markers that
can become sparse as the signal spreads in the lateral direction. On the other hand, unlike
conventional Eulerian wave equation methods, the signal does not suffer degradation due
to numerical error such as diffusion, even though the wavelength is of the order of a grid
cell and the signal can propagate over arbitrarily long distances. During the contract
period, it has been demonstrated, both theoretically and numerically, that there are no
interaction effects when signals pass through each other, even after a large number of
interactions. This is true of the actual linear wave equation that is being simulated, but
had to be shown for our numerical method, which has a strong nonlinear component.
Progress has also been made in developing a reflecting formulation that can treat
complex terrain. To be feasible for realistic cases, this treatment cannot use surface-
conforming computational grids, but must be able to use a simple representation where
the surface is "immersed" in a uniform Cartesian grid, with no requirements for complex
logic involving the geometry of the "cut" grid cells.

4. Results

4.1 Prior to 4/04

Lattice Confinement was added to the linear wave equation with simple, second
order central discretization. A uniform Cartesian grid was used with reflection on the
walls of a square region, in 2-D as well as 3-D. In certain cases, it is well known that a
"tail" will develop behind a 2-D wave front, while the front remains sharp (if it is initially
sharp). In the 2-D computation with Confinement we can keep a sharp pulse and suppress
the tail. This tail is smooth and could, if desired, be computed using standard CFD on the
grid. The goal, however, was to show that a pulse can propagate over long distances with
Lattice Confinement. The same long distance propagation was observed in 3-D where
there were genuine pulse solutions.

4.1.1 Reflection from Planar Surface

In Fig.2 2-D results are presented for a 128x128 cell grid. It can be seen that there
is no perceptible diffusion of the pulse, even after many reflections. These results were
also presented in Ref. [5].

7



4.1.2 Scattering from Missile

The first computation involved a planar scalar wave impinging on the nose of a
missile. The plane of the wave is parallel to the longitudinal axis of the missile. The
magnitude of the scalar is presented in planes parallel (i.e., the symmetry plane) and
perpendicular to the longitudinal axis of the missile, and on the surface of the missile
body. Figures 3 and 4 depict the intensity of the planar wave before, during, and after
reflection from the missile surface in the nose area from the side and from the front,
respectively.

The second computation involved the aft-end of the missile. Figure 5 depicts the
same sequence, but in the fin area, as seen from the rear. The third computation involved
the entire missile. Figure 6 depicts a pulse reflecting from the nose area at45°, in the
symmetry plane, as seen from the side.

Figure 7 depicts part of the overlapping computational grid. The confinement
method has been generalized to curvilinear grids for this case. Confinement also prevents
reflections from the grid interface regions.

All of the missile results involve a pulse confined to about 3 grid cells except in
the fine grid region very near the surface. There, the method reverts to standard CFD.
Also, it can be seen in Fig.5 that, unlike in geometrical optics, there is a diffracted
component. This will most likely represent a diffracting pulse corresponding to the width
of the computational one. We should be able to make corrections to the diffracted
intensity to simulate pulses of other widths. This would result in a very general method
able to treat diffraction to first order (in this short pulse limit).

4.1.3 Scattering from Aircraft

Next, results of confinement are presented for scattering from an aircraft shape.
Here, a uniform Cartesian grid was used with a special treatment of the surface boundary
conditions. A level set description of the body was used, which was early derived from a
surface definition "STU" file. The contours of scalar intensity are presented in the cross
plane depicted in Fig. 8. With these boundary conditions, it can be seen that scattering
from very complex shapes can easily be computed. In Fig. 9, contours of the scalar
magnitude representing the electromagnetic field are shown for three different times.

The last results involve the new vector potential computation. There, a single
contour can be used to represent each part of the wave since the potential extends
throughout the field and has a definite range of values within the pulse. Preliminary
results are depicted in Fig. 10 for two times. Further work is progressing on the new
technique.

4.2 Contract Period

4.2.1 Cahn-Hilliard Equation
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Based on comments by Fernando Reitich and Bill Rider, a connection between
Cahn-Hilliard (CH) - type equations and our discrete convection equation (eqn.1.1) was
investigated. This commonality includes the same linear convection terms and the
appearance of a Laplacian in front of the non-linear term. This commonality is not
surprising since the CH equation was originally proposed as a phenomenological
description for the dynamics of thin fluid interfaces in otherwise smooth flows, and our
equation describes thin pulses propagating in otherwise smooth fields. To derive the
continuum limit of our equation, a parameter limit was derived such that the pulses were
spread over an arbitrarily large number of grid cells. (Though the equations are similar,
the resulting non-linear term is not exactly the same as in the commonly used form of the
CH equation). The derivation is described in Fig. 11.

4.2.2 Suppression of Nonlinearity Effects in Pulse Interaction

As described in Sec. 1.3, to represent intersecting wave equation solutions, when pulses
pass through each other, there must be no amplitude exchange or phase shift. Otherwise,
the actual wave equation being studied could not be accurately simulated, since it is
linear. However, a nonlinear term is required in the discrete equation in order to create a
solitary wave representation of the pulse which will be non-diffusing. A nonlinear term in
the wave equation, of course, usually results in interactions between intersecting pulses,
including the above effects. As explained in Sec. 4.1, it had been shown numerically, to
plottable accuracy, that for our formulation these effects are absent. A new analytic result
was obtained that shows that, for the formulation used, this interaction effect vanishes in
the Born approximation. This vanishing is due to the fact that both the Laplacian and the
time derivative operator operate on the nonlinear term. This derivation is described in
Fig. 12.

4.2.3 Reflection from Complex Terrain

Physical terrain consists, of course, of many irregularities. For short pulses, or
high frequencies, these irregularities can be larger than the wavelengths. This seems to
preclude attempting to achieve high accuracy after reflection, except for special cases
involving very smooth surfaces. For this reason, one of the main reasons for the use of
higher order discretizations in conventional treatments of long distance propagation may
not involve increasing accuracy after reflection, but to attempt to reduce numerical
diffusion in the propagation. Since we do not have this diffusion problem, and we are
treating complex, irregular terrain, we feel that we can use more efficient, lower order
discretizations with no loss of accuracy. We can then implement a very effective method
for treating reflections (and absorption). This method does not require complex, surface-
fitted grids, but allows the terrain surface to be simply "immersed" in a uniform Cartesian
grid. This method employs a "level set" representation of the surface and can easily
accommodate very complex topography with little computational penalty. A picture of
the representation for a simple object is shown if Fig. 13. During the computation, as
explained in Ref. [4], each time step, the wave amplitude is simply set to zero inside the
surface. The nonlinear "confinement" term keeps the surface definition sharp. However,
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since the term steepens the pulse only in the normal direction, the pulse surface is treated
as smooth in the tangential direction. As a result, grid effects such as "staircase" are
avoided and an accurate reflection is cbtained. The scattering results presented in Sec. 4.1
used this method.

New results have been obtained with this method for scattering of pulses from 2-
D and 3-D terrain. The 2-D results, including some diffiaction effects, are presented in
Fig. 14. (Amplitude contours are shown in this and other plots depicting pulse scattering).
Reflection from a 3-D wedge, depicted in Fig. 15, is shown in the short wave limit (with
no diffiaction) in Fig. 16.

4.2.4 Computation of Eikonal Phases (Frequency Domain)

Even though the pulse representation in the short pulse limit will be of direct use
in computing amplitudes and arrival times in that limit, the computation of diffraction
and frequency domain amplitudes will also be important.

The first step towards this goal is to use the pulse arrival time at each grid node to
determine the Eikonal phase, for each pulse arrival. Preliminary results for scattering
from a complex terrain are shown (as time contours) in Fig. 17 for first arrival times,
including a possible use for computing diffraction. In Fig. 18, the direct diffracted field is
suppressed, but both first and second arrival times are displayed. Initial results for a
simpler case with two sources and no scattering are shown in Sec. 4.1.

5. Personnel Supported

The following personnel were partially supported:
Dr. John Steinhoff((US citizen)
Dr. Lesong Wang
Dr. Yonghu Wenren (US citizen)

6. Publications

"Computation of Short Wave Equation Pulses using Non-linear Solitary Waves",
M. Fan, L. Wang and J. Steinhoff, Computer Modeling of Engineering and Sciences, vol.
5, No. 4, 2004. (Included as Appendix I)

7. Interactions

a) Participations/presentations
e Gave talk on Wave Confinement at the AFOSR contractor's workshop in San

Antonio in January.
9 Gave seminar on Wave Confinement at the math department of Brown University

in February at the invitation of David Gottlieb. David seemed very interested in
the property of the formulation that the pulses could pass through each other with
no phase shift or change in total amplitude.

e Invited by Femando Reitich and gave seminar on Oct. 7 at the math department of
the University of Minnesota. Femando has similar interests to David Gottlieb.
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Served on the review panel for the Army High Performance Computing Center at the
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11. Figures
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Figure 1. Comparison of Computed Centroid of Pulses with Exact Solution
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Figure 2.a-j 2D convex wave propagation
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Figure 3.a-e Pulse reflection from missile nose
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Figure 4.a--e Pulse reflection from missile nose
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Figure 5.a-d Pulse reflection from missile fins
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Figure 6. Pulse reflection from missile Figure 7. Detail of Missile Gnid/
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Figure 8. Aircraft Configuration

14



15

80 
--

~~~~. .- , ......... i:"

-40

-20

-40

(b)

40 -i~

20

(c)

Figure 9.a,-c Contour levels (fr'om one third of the maximum to maximum level) of the scalar with
vorticity confinement at different time steps (CFL ýý 0.4).
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Figure 1O.a-b Contour line (maximum level) of the vector potential magnitude at different time steps
(CFL ~ 0.4).
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Taylor Expansion
Cahn Hilliard Equation
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Born Approximation
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"Immersed" Boundary
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Figure 13
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Propagating Pulse Amplitude
2-D Terrain
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Pulse Amplitude 3-D Wedge (Eikonal)
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Frequency Domain Phase
First Arrival (Local Parabolic Method)
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Frequency Domain Phases
First and Second Arrivals (Eikonal)
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Computation of Short Wave Equation Pulses Using Nonlinear Solitary Waves

Meng Fan1, Lesong Wang 2 and John Steinhoff"

Published in Computer Modeling in Engineering & Sciences, Vol. 5, No. 4. 2004

Abstract A new method is described that has the
potential to greatly extend the range of application of 1 Introduction
current Eulerian time domain electromagnetic or acoustic There are many important problems where thin,
computational methods for certain problems. concentrated pulses must be numerically convected over
The method involves adding a simple, nonlinear term to long distances. Examples include acoustic and EM pulses
the discretized wave equation. As such, it does not require scattered or produced by aircraft, rotorcraft and
major restructuring of methods or codes that have already submarines. Often, for these cases, the main interest is in
been developed. Researchers and engineers who are the far field, where the integrated amplitude through the
solving problems for scattering or propagation of short pulse at each point along the pulse surface and the motion
pulses should be able to use the new technique, in many of the centroid surface are important, rather than the
cases as a simple "add on" or callable subroutine, to allow details of the internal structure. In general, these pulse
the propagation of short pulses over long distances, even surfaces can originate in many places, multiply scatter,
if their solver is low order and the grid is coarse compared propagate through varying index of refraction, and have
to the pulse width (which it must be if the distances are complex topology. Accordingly, we consider Eulerian
large). The method has many of the advantages of methods where very general topologies can be treated.
Green's Function based integral equation schemes for Within this scope, there have been many efforts over
long distance propagation. However, unlike these decades to discretize and solve the time dependent wave
schemes, since it is an Eulerian finite difference
technique, it allows short pulses to automatically equations. Elaborate codes have been developed to treatpropagate through regions of varying index of refraction complex geometries, such as entire aircraft (we have in
propagate ueroug h mtios st rying, imind codes developed by M. Visbal of WPAFB, V.and undergo multiple scattering. Shankar of Hypercomp Inc. and others). The application
The new method, " Confinement" , is based on an earlier, of these is, of course, limited by the requirement that
very successful technique, " Vorticity Confinement" , that sufficient number of grid cells must span the pulse to
can also be thought of an "add on" , which allows the accurately solve the equations.
propagation of thin, concentrated vortices over arbitrarilylongdisance, yt keps he uleran inie difernce A new method has been developed that has the potential
long distances, yet keeps the Eulerian finite difference to greatly extend the range of application of these
property of the original fluid dynamic solution method. computational methods for certain problems. The goal of
In the paper the application of Confinement to the scalar this effort is that researchers and engineers who are
wave equation in 1, 2 & 3 dimensions, including solving problems for scattering or propagation of pulses
scattering will be described. should be able to use the new technique, in many cases as

a simple "add on" or callable subroutine, to allow the
keywords: Numerical analysis, wave equation, propagation of short pulses over long distances, even if
computational acoustics, computational electromagnetics. their solver is low order and the grid is coarse compared

to the pulse width (which it must be if the distances are
large). The new method has many of the advantages of
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Green's Function based integral equation schemes for Also, they are already treating diffractive effects, which
long distance propagation. However, unlike these we are now starting to do.
schemes, since it is an Eulerian finite difference
technique, it allows short pulses to automatically 2 Current Methods
propagate through regions of varying index of refraction
and undergo multiple scattering.

The new method, " Confinement", is based on an earlier, Conventional Eulerian approaches to the wave equation
very successful technique, " Vorticity Confinement" , that problem involve, of course, formulating governing pde's,
can also be thought of as an "add on" , and which allows discretizing them and solving them as accurately as

the propagation of thin, concentrated vortices over possible on feasible computational grids, assuming
arbitrarily long distances, yet keeps the Eulerian finite smooth enough solutions. For smooth, non-thin pulses,
difference property of the original fluid dynamic solution these methods are well known to converge to the correct
method. solution as the number of points across the pulse, N,

Confinement involves treating a thin feature, such as a becomes large: Error estimates are asymptotic in N. For

pulse, as a type of weak solution of the governing partial accurate solutions, even higher order, complex

differential equation (pde). Within the feature, a nonlinear discretization methods typically require N to be at least -8

difference equation, as opposed to finite difference or 10 so that the error obeys the large N estimate and is
small [Visbal and Gaitonde (1998)]. Even then, solutions

equation, is solved that does not necessarily represent a

Taylor expansion discretization of the pde. The approach degrade over long convection distances (thousands of

is similar to shock capturing [Lax(1957)], where pulse widths). As a result, conventional methods may be

conservation laws are satisfied, so that integral quantities inefficient (or not even feasible) for thin pulses

such as total amplitude and centroid motion are accurately convecting over long distances. Further, adaptive,

computed for the feature. A more general approach is unstructured grids cannot improve the resolution
needed, however, than for shocks, as discussed below. significantly for realistic problems with many thin, time

Basically, we treat the features as multi-dimensional dependent pulse surfaces.

nonlinear discrete solitary waves that " live" on the
computational lattice. These obey a "confinement" 3 Confinement Approach
relation that is a generalization to multiple dimensions of
some earlier 1-D contact discontinuity capturing schemes. 3.1 Basic Features

Differences between Confinement and conventional 1-D
shock capturing, are that:

First, unlike shocks, characteristics do not point into the For the above reasons, for the problems considered, it is

feature, and extra terms must be designed to prevent it important to have only very few (2 or 3) grid points to

from spreading due to numerical effects in the convection, represent the cross section of a pulse surface at each point

(Harten [Harten(1978)] developed such a scheme, but for along the surface and to propagate it with no numerical

contact discontinuities in 1-D compressible flow.) spreading. This small number of grid points is consistent
with the desire to only compute a few integral quantities

Second, thin wave equation pulses, vortex filaments or across the pulse, such as total amplitude and centroid
thin streams of passive scalars, are intrinsically multi- position, and perhaps width or a small number of
dimensional: A concatenation of 1-D " capturing' moments. Then, the difference scheme can, effectively,
operators along separate axes will not, generally, give serve as a simple, implicit "solitary wave" model that
smooth solutions. Due to the multidimensional nature, it represents the wave.
seems necessary to pay some attention to the (modeled) An important point is that both the solitary wave pulse
structure within the feature, even though it is sampled on
only a few grid cells in the cross-section. dthickness and the physical pulse thickness (they may be
First, a short critique of conventional methods for these different) are assumed to be small compared to the otherprobemsis gven Th basc nw mthodis hen scales in the region where the method is used. Thus, theproblem s is g iven . T he basic new m ethod is th en p l e p o a a e c o d n o g o e r c l o t c h g
described. Initial results in 1, 2 & 3D are finally pulse propagates according to geometrical optics (high
presented. frequency limit) in the region.

The method presented has a similar goal to that of The basic idea is that we want to propagate the minimum

[Bleszynski, Bleszynski and Jaroszewicz (2004)] in that amount of information necessary to describe the pulse.
they propagate a continuous wave surface in the high When it is thick, compared to other dimensions, such as

theyproagat a ontiuou wae sufac in he igh the nearby details of the scatterer, we may choose to use a
frequency limit. The main difference is that they use a

system of coupled rays and we use an Eulerian approach. fine grid and represent the full physical pulse profile. As
it propagates away, we may just be interested, as
explained, in integral quantities at each point along the
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pulse surface, i.e., along a ray normal to the surface. As 2
the pulse propagates away, we may have to use a coarser =a 2V2,"+L-V2[J1-8cI)]
grid that may even have cells larger than the physical At
pulse thickness, while retaining this information in our (1)" representative" solitary wave. where 0 is the scalar amplitude, U" is the index of
An important point is that, when the pulse thickness is refraction, /P is a diffusion coefficient that includes
much less than the radius of curvature of the pulse numerical effects (we assume physical diffusion is much
surface, it is more efficient to describe the pulse profile by smaller), and the discretized grid cell size is h and time
a number of " moment fields" . The resolution of the step, Atd the lastrterm, ell ,iE is a nume
thickness profile then depends linearly on the number of step, At. For the last term, wit , ct is a numerical
these moment fields, which only increases linearly with coefficient that, together with /1, controls the thickness
the resolution. This is then also true of computational and time scales of the propagating pulse. ( will be
storage and work requirements. This should be contrasted defined below. For this reason, we refer to the two terms
with conventional discrete Eulerian schemes, where the in the brackets as " Confinement terms" . We assume
cell size is determined by the required resolution. There, conventional, not rmcessarily high order discretizations
for general configurations of surfaces, the number of grid are used for the differential operators.
nodes (and computer storage) in 3-D increases like the We have found that, at least in tests involving propagation
third power of the resolution and, (including time step through regions of constant index refraction, the results
changes), the work increases like the fourth power. are similar, to plottable accuracy, whether or not the time
As explained in the next section, when the grid is coarse, derivative is included on the RHS of Eq. (1). However,
the Confinement method allows pulse surfaces to since the time derivative enforces a relaxation to the
propagate over arbitrarily long distances while treating desired pulse shape (as explained below), we believe it
them as nonlinear solitary waves, spread over - 2 grid should be included in general.
cells, thus allowing information to be accurately The basic idea is that we want the computed thin pulses to
propagated. On the other hand, when the grid is fine and maintain their profile and total amplitude as their centroid
details need to be resolved, the Confinement terms surfaces are propagated through the field. (We want the
automatically become small and the method can same for separate pulse fields representing moments.) The
automatically become conventional computational requirement that they relax to their profile in a small
acoustics (or electromagnetics). Further, if a pulse number of time steps and have a support of a small
propagates through a smooth medium as a solitary wave number of grid cells determines the two parameters, E
and then encounters a scatterer where details must be and y . Also, we assume that the index of refraction field
resolved, the pulse can be " reconstituted" on the (new)fine grid, if enough moments are available. This in which the pulse is propagating is slowly varying in
finegrenitutio will reqoui mens a e shapin tep. This time and space compared to these scales (this is requiredreco n stitu tio n w ill re q u ire a " p u lse sh ap in g " step . T h isa n w y i th g r d c l s ze nd i m s ep re o r s l vcan easily be effected since, in addition to the common anyway if the grid cell size and time step are to resolve

this field). We then have a two-scale problem with thepositive numerical diffusion, with confinement, we have a thin pulse obeying a" fast ' dynamics.
stable total negative diffusion, as explained below. Thus,
the fine grid pulse can be expanded or contracted until its
moments agree with the correct values (this is a subject of V 2 ( EO - =cF) 0,
current work). This feature will be important in many
cases, for example, when a pulse scatters from an aircraft (2)
wing, propagates many pulse widths, and scatters again
from a tail where fine details must be resolved. Further, Thin pulses are then propagated through the field by the
multiple scattering in inlets for short pulses should "slow" variable, U. Exactly the same type of discussion
provide an important application, applies to the convection of passive scalars, as described

in Ref. [Steinhoff, Fan, Wang and Dietz (2003)].
3.2Approach In general, the integrals that we are interested in are not

sensitive to the parameters E and /1 over a wide range

The governing equation discussed here is the discretized of values, as long as the computed pulses are thin.
scalar wave equation, with an added Confinement term: An important feature of the Confinement method is that,
(the approach als o works for vectors or tensors, such as since it is a second derivative in space and first in time,
Maxwell's equations.) the total amplitude and centroid of the surface are not

changed by the added confinement terms, even under
discretization.
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3.3 Formulation where the number of terms in the sum is N=9. Here, we

assume on >: 0. Negative values can also be
The formulation for Confinement will first be described accommodated with a small extension. Both /p and E
for a stationary pulse, for clarity. The scalar formulation
presented here is related to that presented in [Steinhoff, are positive.Wenren, Underhill and Puskas (1995), Steinhoff, Puskas, An important feature is that all terms are homogeneous of
Babu, Wenren and Underhill (1997)] in -D. This "us degree 1 in Eq. (4). This is important because thedynamics willberealized Underhinla (1e eqion compuTais " confinement should not depend on the scale of thedynamics will be realized in a wave equation computation quantity being confined. Another important feature is the
"in the limit of small time step, or if a separate nonlinearity. It is easy to show that a linear combination

" Confinement" iteration is done each time step. Excellent of terms, for example of second and fourth order, cannot
results are found with convection and are shown in lead to a stable confinement for any finite range of
[Steinhoff, Fan, Wang and Dietz (2003)] for vorticity as coefficients.
well as convecting passive scalars.
For this case, we have an iteration for a non-negative For smooth 0 fields (long wavelengths), the last term in

scalar, 0: Eq. (1) represents a diffusion. If P1 < E, the total

diffusion (in the long wavelength limit) is negative.
on'1 =on +ph 2,v2 - eh2v2-n However, the iteration of Eq. (3) is still stable and has

(3 ~'been observed to converge for values of E several times
(3) that of p (depending on value of jU).

where C13.4 A nalysis of Small Time Step Form

(I(n = . (Sections 3.4 and 3.5 are close to part of Ref. [Steinhoff,[ j, Fan, Wang and Dietz (2003)].
Stability of the iteration as n - o- can easily be shown

(4) [Steinhoff and Lynn (2002)] for a range of values of p1

and E, including /.1 <E. We only have to start with a

on =1 0 In +8 non-negative initial (4°) field and show that, for the p

(5) and E values, On remains non-negative. Since the sum

where the sum is over a set of grid nodes near and of 0 values is conserved, there is thus an upper bound.
including the node where (D is computed, the absolute Assuming convergence as n -- 00, we have

value is taken and 5 , a small positive constant (- 10-s )
is added to prevent problems due to finite precision. The V 2 (p4 C'D) = 0

coefficients, C, Ican depend on 1, but good results are (7)

obtained by simply setting them all to 1 for the wave
equation (different values are used for passive scalar If 4 (and hence (ID) vanishes in the far field, away from
convection to avoid using downwind values [Steinhoff, the pulse, we have po = 610,
Fan, Wang and Dietz (2003)]. Eq. (4) is related to the
harmonic mean. If the point (i,j) is given the label l = 0, we then have
For example, in 2D, except for convecting scalars, the
form used in this study is 4oi t -- 0

/ ir+1 +1 - (8) E
I ý(•l• N'j+fl There are many solutions of this equation. The ones of

Dn a= - 1 importance to us are of the form
N[ Oj = A sec h[a(z - z0 )]

(6) (9)
z = x, cos6 +yj sine
(10)
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A, a, z 0 , 0 constant, and where x, ih, yj jh, h
is the grid cell size, and we use the form corresponding to (15)
C, = 1 in Eq. (4). This converges to a straight pulse (in and the weighted mean velocity

2-D) concentrated about a line at angle 9. It is easy to

see that a satisfies < 4 >n V K/
q~jI

=[1 + 2ch(ah cos 0) + 2ch(adh sin 0)] / 5 (16)

(11) where XY is the (fixed) position vector of node (i, j), and

for N = 5 . j and qj are the scalar value and the velocity at that
An important point is that we obtain close to the same nd are thsca value a nd toc
invariance properties as the original pde: The solution is node, then the centroid evolves according to:
translationally invariant (zo is arbitrary) and close to
rotationally invariant (0 is arbitrary with a width, given by > X >n+1 < , >, +At < >
(x in Eq.(1 1), having some dependence on 0). (17)

3.5 Convection of Passive Scalar Since we are, at this point, only interested in the
"expectation values" for thin pulses and that the pulses

Since the wave equation is, of course, closely related to remain compact, spread over only a few cells, this
the convection equation, we present some analysis for the Ehrenfest-type relation is exactly what we need. Only the
latter, since it is simpler. This analysis shows that the variables of importance are, effectively, solved for. This
pulse convects with the weighted mean velocity, where shows that the pulses, when isolated, evolve as surfaces
the pulse amplitude is the weight. This " Ehrenfest" type with essentially no internal dynamics (assuming they
of relation should extend to the full wave equation. remain confined as thin surfaces). However, we keep the
The following argument assumes, for each convection very important Eulerian feature that the number of pulses
step (n), there is at least one confinement step so that the is not fixed. We could, for example, create additional
feature remains compact. If 0 represents a confined solitary waves by inserting a source: No additional
passive scalar, then, using a conservative convection computational markers need be created, as in Lagrangian
routine, we have the following relationships for the schemes. For this study, we show that pulses, for
dynamics of the convecting solitary wave (we describe example, reflect and thereby increase automatically in
the 2-D case for simplicity): number. This will be seen in the results of Sec. 4.
We have a discretization of

4 Results

) -V -(4) + h2 V 2  EO) At For the scalar wave equation, a simple second-order
(12) centered difference method was used for the discretization

of Eq. (1). We solve it through two steps: the first is a
assuming V. =0 . Then, conventional wave equation solver step, and the second is

the confinement step
on+1 =on -- At'Td,,. (40) + h2V 2 .(,•t -s ED)

(13 d* = 2on __n-1 + •
2 

(At)2d2 
s.O(13) i

(18)
where discrete operators are labeled.
For conservative discretization, the total amplitude on+1 = + h2Vd,5 •.,7(/u• - e¢*) (19)

where dis. and 4n are the second-order centered

(14) difference approximation for the Laplace V2 operator
is independent of n. If we define the centroid and the backward difference operator inn.
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For the 1-D and 2-D result plots, axes are labeled with
grid node location. For the 2-D and 3-D results, plots of
amplitude are made using dense contours.

4.1 1-D Wave Equation

We start a single pulse in the center of a 256 cell grid with
periodic boundary conditions. This pulse has an initial 0

amplitude of 2 at the single, central grid point and is zero
at all other points. The resulting two opposite moving
waves are shown in Fig. 1 for no Confinement (la) and
Confinement (lb). A minimal diffusion necessary for
stability, 1 =0.02 5 , with E= 0 was used in la while .... . -

in lb /t=0.1, E 0.8. The rapid diffusion can be I

seen in la, while in lb the bulk of the pulses remain (b) fifteenth pass
confined to -3 grid cells and have no diffusion. Other (with Confinement)
tests show that they continue unaltered for up to about Figure 1: ID pulse propagation

106 time steps, and beyond if double precision is used.
This was also shown with an earlier Confinement form in 4.2 2-D Wave Propagation

Ref. [Steinhoff, Wenren, Underhill and Puskas (1995)].
It should be noted that even though the Confinement is Waves were propagated on a (128)2 cell grid with
nonlinear, there is virtually no interaction when the waves reflecting boundary conditions. Confinement values used
pass through each other. This was shown in detail in Ref.[Steinhoff, Wenren, Underhill and Puskas (1995)]. were p[ = 0.08, £ = 0.6. Of course, the actual wave

equation exhibits a "tail" behind a pulse in 2-D. This can
be seen to be suppressed by the Confinement, and,
effectively, only the steep pulse front is accurately
computed. The tail, since it is smooth, could be computed
with no Confinement. The main interest, however, is in 3-
D and this was not done.

4.2.1 Convex Wave

An outward propagating, initially circular pulse surface
(diameter 64 cells) was computed. It can be seen in Fig.2
that it remains sharply confined, even after many

WL reflections. Again, as in I-D, there is no discernable
interaction between intersecting waves.

4.2.1 Concave and Convex Waves
(a) fifteenth pass
(no Confinement) The same computation was done as in 4.2.1, but with an

initially 2:1 elliptical surface, with 64 cell major axis.
Both inward and outward moving waves were formed.
The inward moving wave can be seen to form cusps and
"swallowtails" . These are only initially resolved, because
of the coarseness of the grid. The basic discrete wave
equation method, without Confinement, would, of course,
not do better. It is well known that refinement is needed in
such regions for direct application of finite difference
schemes [Benamou and Solliec (2000)].

4.3 3-D Convex Wave Propagation
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An expanding, initially spherical pulse surface was ,24

computed on a coarse, (64)3 cell grid with reflecting 7
boundary conditions. The initial diameter was 32 cells.

Confinement values used were M 0.05 and E = 0.4.
As in the 2-D case, the pulse remains completely
confined, even after many reflections. a ,

"•O(i) •(j)
"a E

a." . Figure 2: 2D circle wave propagation

(a) (b)K

(a)(a) (b)

(c) (d) ..

10

(e) (f (c) (d)

(g) (h)

(e) (t)

Figure 3: 2D convex and concave wave propagation:
Cusp Formulation

5 Conclusion

I I!
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A new Eulerian technique is introduced for solving the
wave equation for short pulses. The method,
"Confinement", reduces to standard Eulerian ones for
smooth, long wavelength pulses. However, unlike J
conventional schemes, it does not diffuse short pulses.
Instead, they are " Confined" and propagate as nonlinear 3
solitary waves that " live" on the computational lattice. As
such, they can be propagated over indefinitely long
distances, while remaining only 2-3 cells thick. These
pulses represent the short physical pulses and accurately
propagate integral quantities at each point along the pulse
surface, such as total amplitude, centroid position, pulse (e) (t)
width and other desired moments. It is argued that, for
thin pulses, the method can easily be implemented in Figure 4: 3D convex wave propagation
existing codes, allowing them to be extended to treat
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